In recent years, detection and alerting systems have been applied to numerous drilling failures, including stuck pipe, fluid influx/loss, and drilling dysfunctions. But the detection of drillstring washout and mud pump failure has been left primarily to traditional methods that rely solely on standpipe pressure and pump rates or on measurement-while-drilling (MWD) sensor data.
Drillers commonly use a simple hydraulic coefficient relating standpipe pressure to pump rate to detect drillstring washouts. MWD pressure and mud motor data may improve detection but this approach remains problematic owing to poor-quality sensor data and various factors that affect flow and pressure data. As a result, drillers often do not recognize a crack in the drillstring before it grows into a washout that may cost operators hundreds of thousands of dollars in lost time, equipment replacement, and fishing operations.
Drillers also rely on standpipe pressure changes to detect mud pump failures and degradation from damaged pump parts. High-frequency pump pressure data may enhance pump wear detection and accelerometer data may be used to infer valve leaks, but these solutions are impractical in most field applications.
To address these shortcomings, a methodology has been introduced using basic rig sensors and contextual information to detect various drilling failure modes. It has applied that same approach to early washout and pump failures detection and alerting.